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Abstract—Phenothiazinyl dyads and triads with variable functionalization can be synthesized in good yields by Suzuki coupling
with suitable phenothiazinyl boronates. In addition, the structure of the phenylated phenothiazine (6) has been corroborated by
an X-ray structure analysis. According to cyclic voltammetry these oligofunctional heterocyclic oligomers are strongly electroni-
cally coupled and represent suitable functional units for novel redox active molecular wires. © 2001 Elsevier Science Ltd. All
rights reserved.

Phenothiazines1 are an interesting class of electron-rich
tricyclic nitrogen–sulfur heterocycles with a low oxida-
tion potential and a high propensity to form stable
radical cations. Besides their physiological activities,2

more recently, due to reversible oxidations giving rise to
characteristic, deep colored radical cation absorp-
tions,1,3 phenothiazine derivatives have become attrac-
tive spectroscopic probes in molecular and
supramolecular arrangements for photoinduced elec-
tron transfer (PET) studies4 and as material scientific5

motifs. Recently, we have communicated a straightfor-
ward access to a variety of functionalized 3-mono- and
3,7-dialkynylated phenothiazines 1 and 2 as well as
dumbbell-shaped butadiynyl-bridged and alkynyl-
bridged diphenothiazinyl compounds 3 and 4 that are
interesting building blocks for redox active oligomers
(Fig. 1).6,7

The prospect of integrating strongly coupled redox
fragments into conjugated chains could constitute a so
far unknown class of redox addressable molecular
wires, in particular, for a redox manipulation of single
molecules with nanoscopic scanning techniques.8,9

According to cyclic voltammetry in dumbbell-shaped
phenothiazinyl dyads 3 and 4,6 the alkynyl bridges
ensure only a fairly weak electronic communication
between heterocyclic cores.10 To circumvent this short-
coming the transposition of biaryl syntheses to the
electron-rich phenothiazinyl fragment could establish a
direct connectivity of the electrophores. Here, we com-

municate the syntheses, structure and first cyclic
voltammetry measurements of directly linked phenothi-
azinyl dyads and triads with flexible substitution.

Synthetically, the exploitation of cross-coupling
methodologies opens flexible strategies to various func-
tionalizations. In particular, the Suzuki coupling11

offers a broadly applicable methodology for biaryl syn-
thesis with a maximum functional group tolerance.
Although quite a number of substituted phenothiazines
have been prepared, due to the electron-rich nature of
phenothiazines and the sometimes tedious access to
suitable halogen derivatives, the synthesis of 3- and
3,7-arylated representatives are almost unknown. How-
ever, the reaction of the monobrominated phenothiazi-
nes 512 under standard Suzuki coupling conditions with

Figure 1.
* Corresponding author. Tel.: +49 (0)89 2180 7714; fax: +49 (0)89

2180 7717; e-mail: tom@cup.uni-muenchen.de

0040-4039/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0040 -4039 (01 )01848 -2



C. S. Krämer et al. / Tetrahedron Letters 42 (2001) 8619–86248620

Scheme 1. Reagents and conditions : (a) 2% Pd(PPh3)2Cl2, 1 equiv. K2CO3, DME/H2O (2:1), reflux, 3 h; (b) 5% Pd(PPh3)4, 5 equiv.
NaHCO3, DME/H2O (2:1), reflux, 12 h.

commercially available aryl boronic and diboronic
acids give the desired phenyl substituted 6 or phenylene
and biphenylene bridged derivatives 7 in good yields
(Scheme 1).13

The X-ray crystal structure analysis of 614 (Fig. 2)
clearly shows the expected butterfly conformation1 of
the phenothiazine core with dihedral angles of 35.11°
(C6�N1�C7�C12) and 31.72° (C6�C1�S1�C12). The
dihedral angle of the phenyl ring with the mean plane
of the adjacent phenothiazinyl benzo moiety shows the
typical biphenyl torsion of 36.96° (C9�C10�C14�C15).
Furthermore, the N-methyl group adopts a pseudo-
equatorial arrangement.

A more flexible synthetic access to dumbbell-shaped
phenothiazinyl dyads and even triads can be realized
upon coupling phenothiazinyl boronic acids or esters.
Therefore, we have transposed a recently described
procedure for the preparation of boronic esters by
reacting even electron-rich aryl bromides with tetra-
methyl dioxoborolane under palladium catalysis.15

Starting from the bromo phenothiazines 512 and 816 the
desired 3-mono- and 3,7-bisborylated compounds 9 and
10 are formed in good yields (Scheme 2).17

With the boronic esters 9 in hand, the Suzuki coupling
with 2,5-diiodo thiophene, 5 or the bromo aldehyde 12
functionalized phenothiazinyl dumbbells like 11 and 13
can be obtained in a straightforward convergent fash-
ion and in good yields as yellow resins or solids
(Scheme 3).18

Applying the cross-coupling protocol to the bis(boronic
ester) 10 with the bromide 5 and 12 as electrophilic
coupling partner or to the pair 9 and 3,7-dibromo
phenothiazine (14),16 we finally are able to synthesize
phenothiazinyl triads 1519 with a flexible substitution
pattern and in good yields (Scheme 4).
Electronically, all these dumbbell-shaped bridged or
directly linked phenothiazine dyads and triads reveal
some interesting features (Table 1). The longest wave-
length absorption bands in the UV/vis spectra appear
between 346 (13a) and 404 nm (15b) and arise from
�–�* transitions within the extended �-system. They are
significantly less intensive than the strong absorptions
within the phenothiazine core appearing between 265
and 280 nm.20 Formyl substitution (13b, 15b) causes a
red shift of approximately 2800–3700 cm−1 as a conse-
quence of an enhanced push–pull character of the tran-
sition. Most remarkably, however, is the strong red
shift by altering the conjugating bridge from phenylene
(7a) to thienylene (11) due to the higher polarizability
and reduced conformational biases of thiophene.

In the emission spectra pronounced Stokes shifts (��̃=
5300–8400 cm−1) can be found for all dumbbells. Inter-
estingly, the phenylene (7a) and biphenylene (7b)
bridged phenothiazine dyads fluoresce with higher
quantum yields (�f=27 and 36%) for the spontaneous
emission upon irradiation of the longest wavelength
absorption band in comparison to the thienylene
bridged or directly linked dyads and triads.

According to cyclic voltammetry two or three reversible
anodic oxidations can be found for the dyads (11, 13a)Figure 2.
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Scheme 2. Reagents and conditions : (a) 3% Pd(PPh3)2Cl2, NEt3, dioxane, reflux, 2 days.

Scheme 3. Reagents and conditions : (a) 5% Pd(PPh3)4, 6 equiv. NaHCO3, DME/H2O (2:1), reflux, 2.5–48 h.

and the triad (15a, Fig. 3), respectively. In comparison
to N-hexyl phenothiazine (E0/+1=728 mV), the first
reversible one-electron oxidations are significantly
shifted cathodically (11: E0/+1=644 mV; 13a: E0/+1=
697 mV; 15a: E0/+1=610 mV) indicating that another
electron-rich phenothiazinyl moiety is in proximal con-
jugation to the first one. Therefore, the second oxida-
tion occurs at higher potentials (11: E+1/+2=737 mV;
13a: E+1/+2=856 mV; 15a: E+1/+2=715 mV). This can be
interpreted as a strong electronic coupling between the
phenothiazinyl units as a consequence of an extended
delocalization of the initially formed radical cation as
also reflected in the magnitude of the semiquinone
formation constants KSEM=38 (11), 495 (13a), and 60
(15a). In the case of the triad 15a even the third
oxidation potential can be detected arising from the
oxidation of the dication (E+2/+3=837 mV). The phen-
ylene- and biphenylene-bridged dyads 7 only display a

very weak electronic coupling (7a: E0/+1=697 mV;
E+1/+2=728 mV; 7b: E0/+1=691 mV; E+1/+2=717 mV),
which can be attributed to an increased electrophor
distance.

In conclusion, we could show that bridged and directly
linked phenothiazine dyads and triads with flexible
functionality can be easily synthesized by applying the
Suzuki arylation to bromo phenothiazinyl derivatives
and novel borylated building blocks. Both electronic
spectra and cyclic voltammetry reveal a strong elec-
tronic coupling between the redox active phenothiazinyl
cores. Thus, these novel functionalized oligomers are
good candidates as functional units in redox address-
able molecular wires. Further studies directed towards
higher oligomer syntheses, their molecular self assem-
bly, as well as the investigation of their electronic
structure and photophysical behavior are currently
underway.
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Scheme 4. Reagents and conditions : (a) 5% Pd(PPh3)4, 6 equiv. K2CO3, DME/H2O (2:1), reflux, 18–48 h.

Table 1. UV/vis and fluorescence data, and fluorescence quantum yields of bridged and directly linked N-alkyl phenothia-
zine dyads and triads in trichloromethane

Emission �max (nm) Stokes shifta ��̃ (cm−1)Absorption �max (nm) Quantum yield �f
b (%)

348sh7a 471 7500 27
477 8400341sh 367b
490 530011 17390
458 7100346sh 1013a

39713b 555 7200 18
471 6300363sh 1515a
556 6800 1715b 404

a Difference of longest (absorption) and shortest (emission) wavelength maxima (cm−1).
b Perylene as a standard.

Figure 3. Cyclic voltammogram of 15a in the anodic region
(CH2Cl2, 20°C, scan rate=100 mV/s, supporting electrolyte:
nBu4N+PF6

−; Pt working electrode, Pt wire counter electrode,
Ag/AgCl reference electrode).
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